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Abstract. The Hermite polynomials are simple, effective interpolants of discrete data. 
These interpolants can preserve local positivity, monotonicity, and convexity of the data 
if we restrict their derivatives to satisfy constraints at the data points. This paper de- 
scribes the conditions that must be satisfied for cubic and quintic Hermite interpolants to 
preserve these properties when they exist in the discrete data. We construct algorithms 
to ensure that these constraints are satisfied and give numerical examples to illustrate 
the effectiveness of the algorithms on locally smooth and rough data. 

1. Introduction. Piecewise polynomial interpolants, especially those based on 
Hermite polynomials (polynomials determined by their values and values of one or 
more derivatives at both ends of an interval), have a number of desirable properties. 
They are easy to compute once the derivative values are chosen. If the derivative 
values are chosen locally (e.g., by finite difference methods), then the interpolant 
at a given point will depend only on the given data at nearby mesh points. If 
the derivatives are computed by spline methods, then the interpolant will have an 
extra degree of continuity at the mesh points. In either case, the interpolant is 
linear in the given function values and has excellent convergence properties as the 
mesh spacing decreases. 

These methods, however, do not necessarily preserve the shape of the given data. 
When the data arise from a physical experiment, it may be vital that the interpolant 
preserve nonnegativity (f(x) > 0), nonpositivity (f(x) < 0), monotonicity (1(x) > 

0 or f(x) < 0), convexity (f(x) > 0), or concavity (f(x) < 0). In this and other 
cases, geometric considerations, such as preventing spurious behavior near rapid 
changes in the data, may be more important than the asymptotic accuracy of 
the interpolation method. One can construct a shape-preserving interpolant by 
constraining the derivatives for the Hermite polynomials to meet conditions which 
imply the desired properties ([4], [5], [8], [11]-[15], [20]), by adding new mesh points 
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and increasing the number of polynomial pieces ([6], [17]-[19], [22]), or by increasing 
the degree of the interpolating polynomials [16]. 

We have developed and tested practical shape-preserving interpolation algo- 
rithms for both cubic and quintic Hermite interpolation using the first of these 
methods (constraining the derivatives). These will be described in the remainder 
of this paper, as follows. First, we review the formulas for cubic and quintic Hermite 
interpolants. Next, we discuss sufficient (and necessary, in some cases) conditions 
for these interpolants to be nonnegative, monotone, or convex, and we give algo- 
rithms for modifying given derivative values so as to ensure that these conditions 
are satisfied. Finally, we give numerical examples to compare the proposed methods 
with other standard methods. 

2. Hermite Interpolation. Let a mesh {xi} U1 with x1 < x2 < < Xn 

be given for the interval [x 1, x], and let {f} , fi = f(xi), be the corresponding 
data points. The local mesh spacing is Axi+1/2 = Xi+1- xi, and the slope of the 
piecewise linear interpolant between the data points is Si+1/2 = 

Afi+1/2/ASi+1/2 
The data are locally nonnegative (nonpositive) in the interval [xi, xi+,] if fi, fi+l > 0 

(< 0). The interpolant Pf is nonnegative (nonpositive) in the interval [xi, xi+1] if 
(Pf)(x) > 0 (< 0) for all x E [xi, xi+1]. The data are locally monotone at xi 
if Si+l/A2S1/2 > 0. The interpolant is piecewise monotone if (Pf)'(x) does not 

change sign in any interval (xi, xi+1). The data are locally convex in the interval 

[xi,xi+i] if Si-1/2 < Si+1/2 < Si+3/2 and locally concave if Si-1/2 > Si+1/2 > 

Si+3/2. The interpolant is of class Ck if (Pf) (x) is continuous and has continuous 

derivatives for all orders less than or equal to k. 
Given the data points {fi } and the slopes {fi }, the cubic Hermite interpolant is 

defined for x1 < x < xn by 

(2.1) p(x) = cO + C16 + C262 + C3 

where 

Co = fi, Cl = fi, 

C2 = (3Si+l/2 - i+l -2)/(Axi+1/2), 

and 

C3 = -(2Si+l/2 - fA+1 -)/(Xi+1/2)2 

for x E [xi, xi+,] and 6 = x - xi. 
The interpolant (2.1) has a continuous first derivative (p(x) E Cl) and possibly, 

but not necessarily, a continuous second derivative. The continuity of the second 
derivative and the order of accuracy depend on how the slopes {ji} are obtained. 
It is well known that the cubic Hermite interpolant is fourth-order accurate if the 
derivatives are exact; from the formulas above it follows that the interpolant is 
fourth-order if the derivatives are third-order, third-order if the derivatives are 
second-order, etc. 

If, in addition, the second derivatives {fi} are available, the quintic Hermite 
interpolant can be defined by 

(2.2) q(x) = cO + C16 + C262 + C363 + C464 + C565, 
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where 

Co = f, c1= , C2 = fi/2, 

C3 = (fi+l - 3fi)/(2Axi+1/2) + 2(5Si+1/2 - 3fi - 2Ji+1)/(AX?+1/2), 

C4 = (3hi - 2hfi+)/(2Ax?+1/2) + (84i + 7Ji+1 - 15Si+1/2 i+1/2), 

and 

c5 = (fi+ - h)/(2Ax?+112) + 3(2Si+1/2 - fA+ -_)/(AX4 12) 

This interpolant is sixth-order accurate if jA is fifth-order accurate and fA is fourth- 
order accurate. 

Often only the data points {fi} are given, and the derivative must be numerically 
approximated by, for example, local Lagrange or least squares interpolants ([2], 
[11], [13], [16]). Note that, once the derivatives of f are given, (2.1) and (2.2) 
are local; changing the value of fi, fi, or fi affects the interpolant only in the 
region [xi 1,xii+J. If the calculation of f and f is also local, only nearby data 
points need be available when interpolating between xi and xi+,. This localness is 
important when storage requirements are critical, such as for very large data sets, 
multidimensional interpolation or on parallel computers with local memory. 

Any algorithm defining {Ji} that makes (2.1) a C2 interpolant, or defining 
{fi, fi } that makes (2.2) a C3 interpolant (for example, the complete spline in- 
terpolants with given endpoint derivatives [1]), is nonlocal. To gain total localness, 
we therefore sacrifice a degree of smoothness. 

We begin the algorithms by generating an accurate, but not necessarily shape- 
preserving, interpolant using derivative approximations obtained from either finite 
differences or the spline method. When the interpolant satisfies conditions suffi- 
cient for shape preservation, it is left unchanged. When the conditions are not 
satisfied, we replace the derivatives at the data points with values that do satisfy 
the conditions and give the desired shape-preserving interpolant. Note that the 
constrained interpolant may not be linear in the data. 

The constraints for nonnegativity (for cubics and quintics) and for monotonicity 
(for cubics) given in the next two sections are extremely local; the constraint for 
the derivatives at xi does not involve derivatives elsewhere. In such cases, a more 
complicated algorithm than we use, but one that causes fewer jumps in the deriva- 
tives, involves first computing {.i} ({fi, fi }) for the complete cubic (quintic) spline 
interpolant in the interval [xi, xn]. If the interpolant is not shape-preserving, we 
locate the point x; where the conditions fail most badly. We redefine the deriva- 
tive(s) at xj to meet the conditions and solve for the complete spline interpolant in 
[x1, x;] and [x;, x,] using fj and jj (and fj) as boundary conditions. The resulting 
interpolant will have a break in the second (third) derivative only at xj. If none of 
the resulting constraints is violated, the algorithm terminates. Otherwise, we re- 
peat the process, breaking [x1, xj] or [xj, xn] into smaller subregions, and continue. 
This algorithm always will terminate if the derivatives at the boundaries are given 
and they satisfy the constraints. 

The constraints can also be used in conjunction with a constrained optimization 
algorithm to, for example, minimize the Lp norm of the curvature (or some other 
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quantity) subject to one or more of the shape-preservation constraints. Ferguson 
[9] has used similar methods to construct shape-preserving parametric cubic inter- 
polants. These methods are more costly and complicated than the algorithms we 
propose, but often produce a visually more pleasing interpolant. 

3. Nonnegativity. Retaining nonnegativity is important in many real-world 
situations ([9], [13]). For example, when the data represent the density or pressure 
of a material, negative values are not physically meaningful. The cubic Hermite 
interpolant will have the same sign as the piecewise linear interpolant if 

(3.1) -3rifi/Axi+112 < rifi < 3rifi/Axi-1/2, 

where ri = sgn(fi) ([4], [11]). The quintic Hermite interpolant preserves nonnega- 
tivity or nonpositivity if 

(3.2a) -5,rifi/Axi+ 1/2 < rifi < 5,rifil<xi_ 1/2 

and 

(3.2b) r-fT > Ti max ( 2Of/ _____ 
- 

_8 2Oft ') 
(Axi-1/2 (AXi-1/2 )21 AXi+1i2 (AXi+ /2 )2] 

A simple constraining algorithm to ensure that the sign of the Hermite inter- 
polant mimics that of the data is 

(3-3) riji + min(Krifi/Axi+1/2, max(-Krifi/Axi_1/2,'rii))1 

where K = 3 for cubics and K = 5 for quintics. In addition, for quintics, fA must 
be constrained to satisfy (3.2b). 

4. Monotonicity. We review some previously published results on monoton- 
icity-preserving cubic Hermite interpolation ([9], [13], [14]), derive the monotonicity 
constraints for quintics, and describe an efficient constraining algorithm. First, we 
state some general properties of monotonicity-preserving polynomials. 

Consider the vector space N of real polynomials of degree 2n + 1. Let H = {p E 
N I p(O) = 0, p(l) = 1} be a hyperplane in N. The monotonicity region M is defined 
as {p E H I p' > 0 on (0, 1)}. M is closed and convex; since supo<,<1 Ip(x)I = 1, 
M is bounded and hence compact. Since the interior of M relative to H is {p E 
H I p' > O}, if p is on the boundary of M relative to H, then either p'(O) = 0 or 
p'(1) = 0, or the discriminant of p' is 0. 

The derivative of the cubic Hermite polynomial p(t) is 

p'(t) = [3(po + P5 - 2)]t2 + [2(-2po - ih + 3)]t + po, 

where p(O) = 0, p(l) = 1, p'(O) = po, and p'(1) = P1 . Setting the discriminant to 
zero gives the ellipse 

(io _ 1)2 + (po-1)(p -1) + (P -1)2-3(Po +Pi - 2) = O. 

which, as Fritsch and Carlson [13] point out, is tangent to the coordinate axes at 
(3,0 ) and (0, 3). The boundary of M must be some subset of this ellipse and the 
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FIGURE 4.1 
The Fritsch-Carlson monotonicity region ([10], [13]) for the 

cubic Hermite polynomial (union of hatched areas). 
The diagonally hatched area is the de Boor-Swartz [3] box. 

coordinate axes. The region shown in Figure 4.1 is the only convex, compact one 
with nonempty interior whose boundary is in this set. 

For higher-degree polynomials, given complete freedom to vary the higher-order 
derivatives, the first derivative must be contained within one of a nested sequence 
of regions bounded by the coordinate axes and ellipses (odd-degree polynomials) 
or line segments (even-degree polynomials) [7]. Figure 4.2 indicates the structure 
of these sets. The region for polynomials of degree 2n is triangular with vertices 
(0 0), (n2 + n, 0), and (0, n2 + n). The region for polynomials of degree 2n - 1 
is bounded by the coordinate axes and the outer part of an ellipse with center 
('n2, 2n2) which is tangent to the coordinate axes at (n 2- 1,0) and (0, n2 - 1). 

A. Cubic Polynomials. 
1. Monotonicity Constraints-Cubics. A simple generalization of what was rec- 

ognized by de Boor and Swartz [3] is that if 

(4.1) 0 ? f<, f+ 1 < 3Si+l/2 or 3Si+1/2 < fi, h+1 < 0, 

the resulting interpolant is monotone in [xi, xi+,]. Ferguson and Miller [10] and 
Fritsch and Carlson [13] independently found an extension of this criterion that gives 
a necessary and sufficient condition for (2.1) to be monotone. The de Boor-Swartz 
criterion is a square inscribed within the Fritsch-Carlson monotonicity region. 

A simple algorithm to guarantee a monotonicity-preserving cubic Hermite inter- 
polant is to project the derivatives of the interpolant to the de Boor-Swartz box 
[14]. 

2. Monotonicity Algorithm-Cubics. When the data are locally monotone, we 
restrict {(j} to the de Boor-Swartz piecewise monotonicity range (4.1). After cal- 
culating an accurate approximation to fi, we project it to the allowed monotonicity 
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FIGURE 4.2 
The monotonicity regions for the first derivatives of 

piecewise polynomial Hermite interpolants [7]. 

region according to 

min(max(O, j ), 3min(ISi-1/21, IS+1i21)), vi > 0, 

(4.2) hii4max(min(O, ji), -3min(I5i-1/21,|5A+1/21))i vri < 0, 

01. 0i = 0, 

where vi = sgn(Si+1/2) if Si+l/2SAi/2 > 0 and vi = 0 otherwise. 
Near the boundary, this constraint can be used if we define S112 and Sn+1/2 to 

be S3/2 and Sn-1/2, respectively. 
If the given data are samples from a sufficiently smooth function f with pos- 

itive derivative at a given point x, and the derivative estimates Ai are accurate 
approximations to the true derivatives f'(xi), then (4.1) will be satisfied near x 
once the mesh is sufficiently refined. Therefore, the interpolant is restricted by 
geometric considerations only near where the mesh is coarse, the underlying func- 
tion is nonsmooth, or the underlying function has a critical point. In the latter 
case, accuracy can be degraded slightly even for smooth monotone functions, but 
Eisenstat, Jackson, and Lewis [8] show that the method is still third-order accurate 
(given second-order accurate values for Ji). 

When the data are not locally monotone, the interpolant also must have an 
extremum. Retaining piecewise monotonicity would require that fi = 0 when 

Si+l/2Ai-1/2 < 0 and would "clip" the interpolant by forcing it to have an ex- 
tremum at xi rather than at a possibly more appropriate nearby point. We believe 
that relaxing the piecewise monotonicity constraint in the interval pair next to the 
extremum produces a visually more pleasing curve. However, if new constraints 
should be imposed at extrema, the change in decision algorithms must still pro- 
duce a stable interpolant. That is, a small change in the data should not create a 
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large change in the interpolant. If we remove all constraints on the interpolant near 
locally nonmonotone data while retaining (4.1) elsewhere, the resulting interpolant 
will be unstable. If vi is defined in (4.2) by vi = sgn(fi) when Si+l/2SA-/2 < O0 
then the third condition in (4.2) is unnecessary and the resulting constraint, 

( ) i <! ~min (max (0, ji), 3min (I Si -/2 1, ISi+ 1/21)), vi >?0 
(4.3) fi 

max(min(0, fi),-3 min(As-1/2 1 Si+1/2 D)i Ui <?,i 

is not as restrictive near extrema. 
Even (4.3) can be overly restrictive, however, because it requires the constrained 

derivatives to be very small at any pair of mesh points where the piecewise linear 
interpolant has very small slope. As shown in Figure 4.3, this can introduce second- 
order errors into the interpolant even for very nice (albeit nonmonotone) data. To 
avoid this problem, we make two changes in the algorithm. 

I . , . - . . I 

FIGURE 4.3 
Interpolation of four points on a parabola, before (dotted) 

and after (solid) constraining by (4.3). 

For any i and j such that 1 < i < n and 1 < i +j < n, let p' be the slope at xi 
of the parabola through the points (xk, fk), k = i + j-1, i + j, i + j + 1. We will 
use this only for -1 < j < 1, for which we have the following formulas: 

- 1 =Si- 1/2 (2xi- 1/2 + AXi-3/2) -Si-3/2 AXi- 1/2 
Pi AXi-3/2 + AXi-1/2 

) o _~ Si-1/2,AXi+1/2 + Si+1/2AXi-1/2 

*44 
pZ 

AXi-1/2 + AXi+1/2 

= Si+1/2(2Axi+1/2 + AXi+3/2) -Si+3/2AXi+/2 

AXi+l/2 + AXi+3/2 

The first change we make is to constrain ji to lie between 0 and 3p? (inclusive) 
for 1 < i < n. This already follows from (4.3) if the data are locally monotone at 
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xi; if the data are not locally monotone at xi, it is an extra constraint, but not an 
unreasonable one. 

The second change is to relax (4.3) in certain cases, as follows: if Si-1/2 > 

max(0, Si+1/2) and Si+3/2 < min(0, Si+1/2), we allow .i to be as large as 

max(3min(pp, A-i1/21i A~+1/21), CMin(P9?pi) 

if p? > 0, and we allow -?i+1 to be as large as 

max(3 mint-po?+l, Si+1/21|, Si+3/2 1), C Mil(-P+ 1,-P+1) 

if Po+, < 0. (We will determine the constant C below.) If Si-1/2 < min(O, Si+1/2) 

and Si+3/2 > max(O, Si+1/2), we similarly relax the constraint on-fi (if ,P < 0) 
and on i+1 (if p?+1 > 0). One has to worry that this might introduce an extra pair 
of local extrema between xi and xi+1 if, for example, Si-1/2 < Si+112 < 0 < Si+3/2; 
however, this could only happen if the constrained value for fi+j were negative, 
which would force po+1 to be negative by the first change we made, which in turn 
would imply pi > -2Sj+1/2. Therefore, as long as C < 1.5, the new value for f 
will be at least 1.5p! > -3S?+1/2, so there will be no extra extrema. 

We now know that C should be at least 1 to handle the case in Figure 4.3 cor- 
rectly, but C should be at most 1.5 in order to avoid extra local extrema. In order 
to handle data that are almost but not quite on a parabola, and in keeping with 
our philosophy of changing the original derivatives as little as possible, we have 
decided to use the largest permissible value of C, namely 1.5. Note that requir- 
ing C < 1.5 implies that the condition Si-1/2 > 0 > Si+3/2 or Si-1/2 < 0 < 

Si+3/2 need not be checked, since if they fail but Si-1/2 > Si+1/2 > Si+3/2 or 

Si-1/2 < Si+1/2 < Si+3/2 holds, then we will have |p2| < 2min(jSi-1/2 I, i Si+ 1/2 1) 
and Ip?+11 < 2 min(ISi+1/21, IS?+3/2 I) SO (4.3) will not be relaxed anyway. There- 
fore, the final algorithm for modifying the original value of fi (1 < i < n) is: 

Compute p- 1,? ppi as in (4.4); 
Let Mi +- 3min(5Si-1/2j, ISi+1/2j IPZ 1); 
If i > 2 and the numbers p9 Pi Si-1/2 - Si-3/2, and Si+1/2 - Si-1/2 

all have the same sign, let Mi +- max(Mi, 1.5 min(1p21, 1Pi- 1I)); 
If i < n - 1 and the numbers - -P 1i Si+/2- Si-1/2, and Si+3/2 - Si+1/2 

all have the same sign, let Mi +- max(Mi, 1.5 min(lpip1, ph 1)); 

Let (sgn f)min(jfjj,M2) ifsgn fi =sgnp9 

O otherwise. 

For i = 1, if sgnf1 = sgnSi+1/2 set ji to (sgnfi)min(Ifji,31S2i+1/2), otherwise set 

fi to 0; handle i = n similarly. 
We will now prove: 

THEOREM. The above algorithm generates a third-order accurate (in L,,) in- 
terpolant, if the original derivative values are second-order accurate. 

Fix a function f E C3[a,b]. Suppose h > 0, and we have a mesh a = x1 < 
X2 < ... < xn = b such that AXi+1/2 < h for all i. We must show that, if 
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values fi are chosen so that Ifi - f'(xi) = 0(h2), these values are modified by 
the constraining algorithm, and the modified values are used to construct a cubic 
Hermite interpolant Pf, then Ilf - Pf = 0(h3). First note that, since second- 
order accurate derivatives produce a third-order accurate cubic Hermite interpolant, 
it suffices to show that the constrained derivatives are still second-order accurate. 
Second, since the constraining algorithm merely changes Ai to the nearest value 
in some interval, the function which maps unconstrained derivatives to constrained 
derivatives is Lipschitz with constant 1, so it suffices to show that, if the constraining 
algorithm is applied to the exact derivatives f'(xi), it changes them to values fi 
such that Ifi - f'(xi)I - 0(h2). To do this, we use two lemmas (the constants are 
not the best possible), which can easily be proven in contrapositive form using the 
Mean Value Theorem. 

LEMMA 1. If If"'(x)I < cforx E (xi,xi+1), then If'(xi)+f '(xi+1)-2Si+1/2 < 

ch2. 

LEMMA 2. If P(x) is the quadratic function such that P(xj) = f(xJ) for j = 

i-1,i,i+1, and if jf"'(x)l < cfor allx E (xi-,,xi+,), then IP'(xj)-f'(xj)l < 2ch2 
forj = i - 1,i,i + 1. 

We will now show that, for sufficiently small h, if If"'(x)I < K for all x E [a, b], 
then Iji - f'(xi)I < 3Kh2 for all i; this will complete the proof of the theorem. 
Suppose Ifi - f'(xi)l > 3Kh2 for some i; then f'(xi) has violated some constraint 
by at least 3Kh2. For sufficiently small h, S1+112 will have the same sign as f'(xl) 
if f'(x1) :$ 0, and similarly for Sn-1/2 and f'(xn). If 1 < i < n, then If'(xi) - 

PQ < 3Kh2 by Lemma 2. Hence, the constraint violation must be of the form 

If'(xi)l > 3min(|SiS1/21, ISi+1i21) + 3Kh2; by symmetry, we may assume f'(xi) > 
31SiS-1/2+?3Kh2. Then, by Lemma 1, we must have f'(xi-1) <-ISi- 121 -2Kh2 

Next note that i cannot be n if h is sufficiently small. The reason for this 
is that, as h tends to 0, f(Xn-1) tends to f'(xn) (which remains fixed), so if 
f'(xr) > 0 as the above inequalities require, then f'(xn,-) > 0 for sufficiently 
small h, so we cannot have f'(xn,-) < -ISn-1/21 - 2Kh2. Similarly, i cannot 
be 2 if h is sufficiently small. Also, we must have Si-3/2 < -ISi-1/2I < Si-1/2i 
since otherwise we would have P0-1 > - ISiS1/2i1, contradicting Lemma 2. Similarly, 

Si+1/2 > S-1121 > Si-112 Therefore, we are in the case where the constraining 
algorithm may relax (4.3); since Lemma 2 requires both p? and p-1 to be within 
2Kh2 of f'(xi), the algorithm will relax (4.3) enough to give Ifi - f'(xi)I < 2Kh2, 
which is a contradiction. This completes the proof of the theorem. 

B. Quintic Polynomials. 
1. Monotonicity Constraints-Quintics. The monotonicity region for cubics is 

a simple region in a plane. The monotonicity region M for quintics is a compact 
convex region in a four-dimensional hyperplane H, which we can describe as a 
subset of R4 using the coordinates (fi, fi ji+ 1, fi+ 1). We first discuss a method of 
drawing planar slices of this monotonicity region. Only four such slices are needed 
for the algorithm. 

Given fixed values of fi and +i, it is desirable to have a picture of the points 
(fi, fi+j) E R2 for which (1i, fji+1, fi+ 1) E M. This is the intersection of M 
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with the plane where fi and f4+j are fixed. Note that, for a given r E (0,1), there 
is a unique quartic polynomial of the form 

y(x) = (x-r)2 (ax2 + bx + c) 

such that y(O) = ji, y(l) = 4i+i, and fo' y(x) dx = 1. 
We can compute a, b, c, y'(0), and y'(l) in terms of r: 

a (30r4 -40r 3+15r 2)I+ +(30r4-80r+75r2-30r+5)fi-(60 4-120r3+60r ) a -1OT6 -30r5+33r4 -16r3 +3r2X 

* a 

b=f+il _ _H 
(1-r)2 r2a 

c =i/r2, 

y'(0) = r2b - 2rc, 

and 

y'(l)= (1 -r)2(2a+b) +2(1 -r)(a+b+c). 

The point (fi, y'(0), ji+i, y'(l)) is a good candidate for the boundary of the mono- 
tonicity region. If ax2 + bx + c > 0 on [0,1], the point is on the boundary. As r 
ranges over [0,1], we generate a loop which, if ffi+1 5$ 0, is the entire boundary of 
the cross section; if fAfi+1 = 0, then one or both of the coordinate axes also form 
part of the boundary. 

Four slices of the quintic monotonicity region are shown in Figure 4.4. The 
proposed monotonicity-preserving algorithm will restrict the derivatives to the in- 
scribed rectangles in the same way that the cubic monotonicity-preserving algo- 
rithm restricted the derivatives to the de Boor-Swartz box. 

The value 5 in Figure 4.4 is somewhat arbitrary. A value as high as 6 can be 
used; the cross section with fi = fi+1 = 6 consists of the single point (-60,60), 
and rectangles can be chosen within the cross sections with ji = 0, .4+i = 6 and 
vice versa. The resulting algorithm would impose slightly weaker constraints on the 
first derivatives, but the intervals of permissible values for the second derivatives 
would be slightly smaller. The resulting interpolant would differ very little from 
that obtained using the original algorithm. 

The convex hull of these four rectangles is a four-dimensional solid. This solid, 
when intersected with a plane of constant fi and A+i, forms a polygon that must be 
inside the convex, connected monotonicity region. Within this polygon we choose 
a rectangle defined by 

fi E [to (fi I fi+1) , Uom (fi I fi+ 1)] 

and 

fi+1 E [Llm(fijf+j), Um(fijf+j)j, 

where 

L~m(a, b) = -7.9a - 0.26ab, 

UP (a, b) = 20- 8a - 2b-0.48ab, 
Lm (a, b) =-Uom (b, a), 
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and 

Ul (a, b) =-Lo (b, a). 

To confirm that this rectangle is contained within the monotonicity region for all 
a, b E [0, 5], it suffices by convexity to verify that, for a, b E {0, 5}, the four corners 
of the rectangle are in the region; these sixteen verifications can be done directly. 

Figure 4.5 shows two sequences of cross sections of the monotonicity region: one 
in which fA+i is held at 0 while Ai varies from 0 to 5, and one in which h and Ah+i 
are equal and vary from 0 to 5. The inscribed rectangles indicate how much of the 
monotonicity region is used by the algorithm. Figures 4.5A and B show the cross 
sections and rectangles as they actually appear in the (fi, fi+ 1) plane; in Figures 
4.5C and D, each cross section is rescaled to map the rectangles to the unit square. 

We now consider arbitrary data points x1 < X2 < X3 < ... < xn and arbitrary 
function values fi, f2, .. . , fn and describe how to construct a function Pf(x) de- 
fined on [x1, Xn] such that Pf (x) is a monotonicity-preserving quintic on [xi, xi+i] 

for i = 1, 2, .. , n - 1, Pf is twice differentiable at the points xi, and Pf (x) =f 

FIGURE 4.4 
Four cross sections of the quintic monotonicity region. 
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Assume we have a quintic Hermite interpolant q for this data. If fi :$ fi+i, let 

gi(t) = [q([xi+- xi]t + xi) - fi](fi+-fi), 0 < t < 1; 

gi is defined on [0, 1] and gi(O) = 0, gi(1) = 1. Since gi is a normalization of q, gi 
is monotonic if and only if q restricted to [xi, xi+1] is. If fi = fi+1, take gi(x) = 0, 
because the only monotonic function defined on [xi, xi+,] in this case is constant. 

The function gi is monotonic if the following conditions hold for i = 1, 2,.. , n- 1: 

to (gi (0) g(1)) < 9i (0) < Uom (g0() g(1)) 

and 

LN (oih(0)a t()) < (n) < Uh (ol0)d o(g)) 

Note that these do indeed hold for gi 0. 

FIGURE 4.5 

Cross sections of the quintic monotonicity region. 
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From the definition of gi, we see that, if fi $ fi+i, then 

MO() = A/Si+1/2i 

Ml(O) = ji+1/Si+1/2i 

MO() = JiA(Si+1/2/A~Xi+1/2)i 

and 

M(l) = fi+l/(Si+1/2/Axi+1/2). 

If fh+j = fi, all derivatives vanish. In the above equations and in the following 
analysis, we define 0/0 = O. The local conditions at xi for i = 2, ... ,n - 1 are that 

9i (0) = (Si +1/ 2 / AXi +1/2) E [Lo (i (0)I gi (1)) I UO' (9i () I i (1)) 

and 

9i-1 (1) = AA/Si-1/2/Ai-xi1/2) E L 9-(?,9-(1)U 9- ?, - 1)] 

2. Monotonicity Algorithm-Quintics. We constrain the values of fA as follows: 

| min(max(0, j,), 5min(ISi-i/2I, ISi+1/2I)), Ui > 0, 

max(min (O, ji), -5 min (ISi - /2 |, I Si+1/2 |)), Ui < O., 

where ai is defined as for (4.3). If monotonicity within each interval is desired, an 
analogue of (4.2) with 3 replaced by 5 can be used instead of (4.5). 

If the data are monotonically increasing at xi, the quintic Hermite interpolant 
will be monotonic if {Jj} is constrained by (4.5) and {fJ} is constrained to satisfy 

(4.6) fi E A and fi E B, 

where 

A = [-7.9d+ - 0.26d+b, (20 - 2b)Si+1/2 - 8d+ - 0.48d+b]Azx-T112, 

B = [(-20 + 2a)Si-1/2 + 8d- + 0.48ad-, 7.9d- + 0.26ad-]zx-j12, 

a = max(O, fi-1/Si-1/2), b = max(0, hi+1/Si+/2), 

and d- is Ai if jiSi?1/2 > 0 and equal to 0 otherwise. The factor on the right of 
each interval is meant to multiply both endpoints of the interval. 

If h < 0, then, since 0 < a, b < 5, the two intervals take the forms A = [0, +] and 
B = [-, 0], so they must intersect. If fi > 0, the two intervals may not intersect; in 
this case, fA must be reduced beyond what is called for in (4.5). When this occurs, 
it is desirable to change Ai by the least possible amount, that is, to replace A with 
the highest value that allows the two intervals to intersect. To do this, we set the 
right endpoint of interval A equal to the left endpoint of interval B and solve for 
fi. The value is given by 

(4.7) (20 - 2b)Si+1/2/Xi+1/2 + (20 -2a)Sj_1/2/AXi-1/2 
* t (8 + 0.48b)/LAxl+1/2 + (8 + 0.48a)/Axi-1/2 

If Si-1/2 < 0 and Si+1/2 < 0, both intervals in (4.6) should be reversed. Equa- 
tion (4.7) now gives the smallest fA < 0 for which the intervals intersect. 
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If Si+l/2i-1/2 < 0, one of the intervals in (4.6) should be reversed. Since either 
d+ or d- must be zero in this case, one of the intervals must be of the form [0, +] 
or [-, O]. If ji = 0, the other interval will have the same form, so the two intervals 
will intersect; therefore, as in the two preceding cases, when the two intervals do 
not intersect, sufficiently reducing Iiil remedies the problem. 

In any of these cases, if values for fA-i, fA, and fA+1 are given that yield in- 
tersecting intervals and if fi-i or fi+i is reduced in absolute value (but its sign is 
not changed), then the new intervals will also intersect. Therefore, we may proceed 
sequentially from i = 2 to i = n - 1, at each stage reducing I I if necessary to 
obtain a nonempty set of permissible values for fA. Afterwards, we can modify the 
second derivatives by setting fA to the value permitted by (4.6) that is closest to 
the original estimate for fA. 

Alternatively, we can do the reductions to I "in parallel"; that is, for each i, we 
can use the unreduced values of fA-i and h+1 when deciding how much to reduce 

I i. This may result in some derivatives being reduced more than they would have 
been by the preceding algorithm; however, it gives a completely local algorithm for 
constraining the derivatives. 

We would like to be able to relax the constraints in the case shown in Figure 
4.3 as we did for cubics, but we have not yet found a satisfactory way to do so. As 
it stands, the algorithm is therefore no better than second-order for nonmonotone 
data; we have not determined its order of convergence for monotone data. (We 
remind the reader that, for applications to sparse or nonsmooth data, the order of 
convergence is almost completely irrelevant.) 

5. Convexity. In the preceding sections, we presented algorithms to assign 
derivatives to a given data set that always yield a C1 piecewise cubic or C2 piece- 
wise quintic interpolant that preserves monotonicity or positivity of the data. Un- 
fortunately, there is no such algorithm for convexity. This can be easily seen by 
examining the function f(x) = lxi, x E [-1,1], on a mesh that includes the point 0. 
At xi = 0, the backward derivative f47 must be equal to Si-1/2 = -1 to preserve 
convexity on [xi-2, xi]; the forward derivative fi must equal Si+1/2 = 1 to preserve 
convexity on [Xi, Xi+2]. Thus, since Si-1/2 $ Si+1/2, the convex interpolant will 
not be differentiable at xi. 

We must therefore lower our expectations, accepting either nonconvex inter- 
polants of convex data or nondifferentiable interpolants. This section gives algo- 
rithms for both of these options. 

A. Cubic Polynomials. 
1. Convexity Constraints-Cubics. The conditions on 127 and fj ensuring that 

the cubic Hermite interpolant preserves convexity or concavity of the data are [15] 

(5.1) Pisi-1/2 < Piji < Pifz+ < PiSi+112 

and 

(5.2) -2pi(4; 1 - Si+ 1/2) < Pij -S+ 1/2) < -pi(f+ 1Si+ - /2) 

where 
PI 1 if Si+412 > Si-12 (convex data), 

1 if Si+412 < Si-1/2 (concave data). 
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The inequality (5.1) requires the slope at xi to be between the slopes of the 
piecewise linear interpolant on either side of xi and forces the jumps in (Pf)' to be 
in the correct direction. The inequalities (5.2) are restrictions on (Pf)" to ensure 
that it does not change sign in [xi, xi+]. 

Note that a solution to (5.1) and (5.2) exists since the piecewise linear inter- 
polant (Yf = Si-1/2, = Si~1/2) satisfies these inequalities. The piecewise cubic 
interpolant, however, can be much smoother and more accurate while preserving 
convexity. 

Combining (5.1) and (5.2) gives the more compact necessary conditions 

(5.3a) L -1 < pif7 < L-ax 

and 

(5.3b) L+ in< Pifi < L+ax 
where 

L =i max(piSi-1/2, 2pi(3Si_112m- 

L-ax = min(pi(3Si_1/2- 

in= max(pi(3Si+1/2-2f71),pif[} 

and 
L+ax = min(piSi+1/2, 1pi(3Si+ 1/2-ft7)) 

If the underlying function has a continuous nonzero second derivative near a 
given point, (5.1) and (5.2) will be satisfied once the mesh is sufficiently refined. 
Let x_ < x+ be two adjacent mesh points that approach the fixed point x as the 
mesh is refined, and let S = (f(x+) -f(x))/(x+ -x). The differences f'(x) -S 
and f'(x+) - S can be expressed as - (x+ - x_)f"(n_) and 2 (x+ -X_)f"(n+), 

respectively, where x_ < 1, 17+ < x+; hence, once the mesh is sufficiently refined, 
these differences will have the correct signs to satisfy (5.1), and their ratio will be 
close enough to -1 for (5.2) to be satisfied. 

2. Convexity Algorithm-Cubics. There is no local algorithm which produces a Cl 
convex piecewise cubic Hermite interpolant whenever this is possible; it is easy to 
construct data where requirements (5.1) and (5.2) at i have consequences at distant 
j. An example of a nonlocal convexity-constraining algorithm is to first calculate 
accurate derivatives i at the data points, and then find the closest set of derivatives 
{f+} and {jf} to {f} that satisfy (5.3). That is, solve the optimization problem, 

5.4) min | -||+ lf-i 

We want an interpolant to have f, = A whenever possible, to generate values 

fi- and f+ close to the original estimate f, and to behave well for nonconvex 
data. Besides being computationally complex and expensive, the above algorithm 
has none of these properties. We now suggest a simpler and effective alternative 
algorithm. 

As in the case of monotonicity, we cannot simply drop all restrictions when 
the data are not convex if we want a stable algorithm. Therefore, we replace 
requirement (5.2) with 

(5.5) 2 i&+1 
- Si+1/21 < I.i+ - Si+1/21 < 21f4+1 

- Si+1/21. 
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We can now use (5.1) to obtain restrictions on jt and fi- that do not depend on 
neighboring values: 

(5.6) PiSi-1 2 < Pift?, Pifi < PiSi+1/2, 

(5.7a) If'+ - S+1i2I1 < 2ISi+3i2 - Si+1/21, 
and 

(5.7b) 1| - Si1/2I1 ? 2ISi-3/2-i - 1/21 

At this point, we may have a problem: (5.7) may force fj and f- to be unequal. 
We must therefore decide whether to insist on convexity at the expense of differen- 
tiability (case 0) or to insist on differentiability at the expense of convexity (case 
1). In case 0, we let (5.6) and (5.7) stand as the initial restrictions on fi? and 12-; 
in case 1, we relax one or both of the inequalities (5.7) to make them satisfiable for 
some fi- = = 

We then have an initial interval of possible values for each derivative ji, f* 
Next, we apply (5.5) in a sweep from i = 1 to i = n to restrict these intervals 
further. That is, using the initial interval for jl+ and (5.5), we compute a range of 
possible values for 17- which, when intersected with the old interval for 17- gives 
a new interval for j2-. This then gives a new interval for j+, which will be the new 
interval for f2- intersected with the old interval for f+ unless, in case 0, we have 
been forced to allow f27 and j2+ to differ. We now compute a new interval for f7 
using (5.5), and so on. 

Suppose that at some point we obtain an interval of negative length; let k be the 
i at which this happens. The region of data causing the problem can be localized 
by performing a backward sweep starting at k; at some i (define j to be this i), we 
will again find an empty interval. We now have two nonintersecting intervals for 

127 or ji for each i strictly between j and k; using these intervals, we modify one 
of the constraints from j to k, relaxing it just enough to make the new constraints 
from j to k satisfiable. In case 0, this is done by setting a certain amount by which 
f- and h+J may differ; in case 1, we choose a positive number c and change (5.5) 
for some single value of i to 

(5.5') 2 Ift~l - Si~l,2- - 1c < Iit - S1+1121 ? 21j.+; - Si+1/21 + C. 

(Choosing a single constraint to relax is a source of instability in the algorithm, but 
this seems preferable to a stable algorithm in which one unsatisfiable set of con- 
straints can cause a number of inflections in the interpolant.) Actually, sometimes 
relaxing two adjacent instances of (5.5) results in a more pleasing curve than does 
relaxing just one instance of (5.5); the programmer must choose. 

Our method for choosing the constraints) to be relaxed in case 1 is as follows. 
For each i from j to k-1, let d$ be the point in the forward-sweep interval at i 
which is closest to the backward-sweep interval at i, and let d be the point in the 
backward-sweep interval at i + 1 which is closest to the forward-sweep interval at 
i + 1. (For this purpose the "forward-sweep interval at k" is the interval computed 
by (5.5) from the forward-sweep interval at k - 1, ignoring the original interval at k; 
the "backward-sweep interval at j" is treated analogously.) Using the value d$ and 

d-+I, we compute a value which represents the penalty for relaxing the constraint 
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(5.5) on the interval [xi, xi+,]. Currently we compute this penalty as follows. First, 
we compute an area. If d$ and d- are on the same side of Si+1/2, this will be 
the area enclosed by the line segment L from (xi, fi) to (xi+,, fi+i) and the cubic 
Hermite curve through these points with slopes dt and d i1; otherwise, the area 
is that between this cubic Hermite curve and the tangent line at xi or at xi+,, 
depending on which of d$ and d is closer to Si+1/2. Next, we divide this area by 
the square root of the length of the segment L, because a "bulge" in the interpolant 
is visually less unpleasant if it is stretched out. Finally, we subtract a multiple of 
the old penalty if this constraint has already been relaxed; this tends to cause fewer 
constraints to be relaxed. (When computing the old penalty, we do not subtract off 
even older penalties.) The constraint .chosen for relaxation is the one which gives 
the least penalty. However, if we can instead relax the constraints on two adjacent 
intervals [xi-,, xi] and [xi, xi+,] so as to get a smaller total penalty (where the total 
penalty is computed as the sum of the penalty for d> and 2 (d- + dt) on [xi-,, xi] 
and the penalty for 2 (dT + d+) and d- on [xi, xi+,]), we do so. The algorithm 
for case 0 is similar except that we only consider relaxing one constraint, and the 
penalty, which is now a function of two slopes at the same point, is computed as 
the angle between the two slopes minus a multiple of the old penalty. 

In any event, after a constraint is relaxed, we perform another forward sweep; 
this is repeated until a nonempty interval for fn is obtained. (For reasonable data, 
very few iterations are needed; even the worst cases we examined required far fewer 
than the ostensible maximum of 2 (n2 - n) + 1 iterations. Also, the repeat forward 
sweep can begin with the changed constraint rather than at i = 1.) 

The resulting interval for jW is the set of all possible values for jW in a derivative 
assignment satisfying all of the current constraints. To find the corresponding 
intervals for the other derivatives, we perform a backward sweep using the intervals 
obtained from the final forward sweep. Finally, we choose the values to use from 
these intervals. A straightforward approach is to select some starting point io and 
sweep backward and forward from it, at each point choosing derivatives as close 
as possible to the original estimates, but in the corresponding intervals, satisfying 
(5.5') with respect to already chosen derivatives, and, in case 0,. not allowing jt 
and f- to differ by more than the prescribed amount. We may choose io to lie in 
a long range where the estimated derivatives already lie in the computed intervals; 
on the other hand, if we are strongly concerned with stability, we may wish to set 
io = n (with an added benefit: the backward sweep to compute the final intervals 
becomes superfluous). 

An extra sweep may be performed in case 1 to detect situations where, because 
the data were highly nonconvex, two adjacent instances of (5.5) were independently 
relaxed, whereas relaxing one instance of (5.1) instead could bring better results. 
For example, consider f(x) = Ix - 11 - Ix + 11 + 2x, with data points at x = 

-5, -3, -1,0, 1,3, and 5, and see Figure 5.1. 
This algorithm puts a great deal of effort into deciding which constraints should 

be relaxed and by how much; therefore, it gives good results, but it is complicated 
and apparently may not run in linear time. An alternative which avoids these 
problems, but gives less pleasing curves in some cases, is to use a modification of 
the algorithm of Costantini and Morandi [5]. The basic idea here is that, when 
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it is discovered that the constraints are unsatisfiable, the most recently considered 
constraint should be relaxed. The new algorithm proceeds as follows in case 1 (case 
0 is analogous). First, compute the initial intervals for fi and perform a forward 
sweep as before. If this succeeds, continue as before; if it fails at i = k1, set fk1 -1 

to be that value from the forward-sweep interval which comes closest to making 
(5.5) on [xk1 1, Xk1] satisfiable, and sweep backward from here to get intervals for 
fi (1 < i < ki - 1). Now start anew on the interval [xkl, Xn]; if the forward sweep 
here fails at k2, set fk2 -1, get intervals for fi for k1 < i < k2 - 1, and proceed 
to [xk2, Xan. Continue until every ji has a value or an interval. Finally, for each 
km (including ko = 1), set fkm to be the value in its interval which comes closest 
to satisfying the preceding constraint (or to the original Ii if m = 0), and sweep 
forward to find the remaining values fi. 

With Eric Van de Velde of New York University, we have developed a convexity- 
preserving algorithm for piecewise cubic parametric interpolants and are analyzing 
its effectiveness. 

B. Quintic Polynomials. 
1. Convexity Constraints-Quintics. As with monotonicity-preserving quintics, 

the region of values for ji, I fif+, and fi+i that give convexity-preserving quintics 
is far too complex to use in its entirety, but a judicious choice of rectangles within 
this region leads to a tractable algorithm for constraining the derivatives. 

Consider a single interval [xi, xi+ ] with given values i, fii+1, fi+i1 and 

fi+i. By resealing and possibly inverting one or both axes and subtracting a lin- 
ear function, we may reduce the problem to the case where xi = 0, xi+, = 1, 
fi = fi+1 = 0, and either fi = fi = 0 or fi = -1, Ifi+11 < 1. Clearly 
the only such convex quintic with fi = fA+1 = 0 is the constant function 0 
(that is, fi = fi+1 = 0). Therefore, assume fi = -1. The convex region 
consisting of triples (fi+iJfi,fi+i) that give convex quintics is complicated, but 

FIGURE 5. 1 

A case where (5.1) should be relaxed. The dotted and solid 
curves show the constrained interpolant before and after 

the final sweep, respectively. 
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we can verify that the quadrilaterals with corners (1, 0, 0), (1, 0, 6), (1, 6, 0), (1, 6, 6) 
and (2,2,?),(2,2,19/9),(2,8,?),(2,7,2) are contained within it. The point 
(1 - x6/3, 4 + v6_, 0) is also in the region and gives the minimum possible value for 

fA+1 [7]. Hence, we find a square within the convexity region if we fix fi+j = 1, a 
rectangle (with opposite corners (1, 2,0) and (1, 7,2)) for ji+j = 2, and a point 
for fi+1 = 1-6v/3; linear interpolation gives rectangles for intermediate values of 

2. Convexity Algorithm-Quintics. Although an algorithm giving a C2 con- 
vex piecewise quintic interpolant, whenever such an interpolant exists, would be 
extremely complex and time-consuming, we now have the tools to construct a rea- 
sonable algorithm that gives good results in most cases. First, constrain the first 
derivatives ji+, fi- using the cubic convexity algorithm. Next, consider the inter- 
val from xi to xi+,. By reversing one or both coordinate axes, we may assume 
-fi+ > if . Next, find intervals in which fi+ and f^-i+ should lie. If Ji - 0 
these intervals are both [0,0]; otherwise, they take the form [cLc(r),cUg (r)] and 
[cLc (r), cUc (r)], where c =- /(xi+ 1- xi), r =-j , and L, U, L, U are 
functions defined by linear interpolation of the following points: 

L: (-1, 0) (0,0) (1- -/3,14 + V) (1,2) (1, 0), 
Uc: (-1,15) (0,15) (1- '6/3,4+ '6) (1,7) (1,6), 
Lc: (-1,15) (0,15) (1-4V/3,0) (2'0) (1,0), 

UC: (-1,0) (0,0) (1 - V/3X0) (1,2) (1,6). 
(The -1 and 0 values are chosen to increase the stability of the algorithm. The 
values 0 and 15 are not critical; the symmetry around y = -x is.) 

If the intervals for f and fi- intersect, set the constrained values for At and 
f7 to that point in the intersection closest to the original estimate for ft. If the 
intervals do not intersect, but we insist on convexity rather than a C2 interpolant, 
select fi- and fit to be as close as possible to each other within their respective 
intervals. If we do insist on a 02 interpolant, set fA - = fi to an average of 
the two endpoints of the intervals nearest each other. This average should not give 
equal weights to the intervals, as that would give unfortunate results for functions 
like x + lxi near x = 0; instead, we can compute a weight w for each interval as 
follows: 

1?, ?] ( 0+ ) : W- = ; 

[cLc(r), cUoc(r)]: w c max(0. 1, Uc(r) -L(r)); 

[cLc (r), cUfc(r)]: w- = c(Ulc(r) - Lc (r)). 
Of course, averaging numbers a, and a2 with weights w1 and W2 is the same as 
averaging them with weights w-1 and wT1 , so we need not concern ourselves about 
one of the inverse weights w-1 being zero. They will not both be zero, because any 
interval with w-1 = 0 contains the point 0, and we have assumed the two intervals 
do not meet. 

Nonintersecting intervals, however, will occur only for rough grids or for noncon- 
vex or barely convex data. For convex data, if the first-derivative constrainer suc- 
ceeds in satisfying (5.1) and (5.2) and the interval spacing does not vary too rapidly 
(specifically, no interval length xi+1 - xi is more than twice one of its neighbors), 
the convexity-preservation intervals for Ai and fJ- will always intersect. 
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FIGURE 6. 1 
Interpolation curves for the RPN 14 data in Table 6.1. 
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Interpolation curves for the titanium data in Table 6.1. 

FIGURE 6.2 
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6. Numerical Examples. In this section we compare the geometric properties 
and accuracy of the interpolants on both monotone and nonmonotone data sets. 
We use MC and CC to refer to interpolants obtained using derivatives that are con- 
strained for monotonicity and for convexity, respectively. The original derivatives 
were obtained from second-order finite differences. 

The Fritsch-Carlson RPN 14 radiochemical data [13] and the de Boor titanium 
equation-of-state data [1] have been used to compare many different algorithms. 
The data points are given in Table 6.1. 

Figures 6.1 and 6.2 show the monotonicity- and convexity-constrained and un- 
constrained cubic and quintic Hermite interpolants. The constraints can convert a 
geometrically unacceptable interpolant, such as the cubic or quintic spline, into an 
excellent one. 

We also compared the interpolation errors and convergence rates of the con- 
strained and unconstrained interpolants of analytically defined functions. In the 
examples we ran on coarse meshes, the errors in the constrained interpolants were 
up to five times smaller than errors in unconstrained interpolants. When the mesh 
adequately resolved the underlying function, the constrained and unconstrained 
interpolants were identical except at a few isolated points. 

TABLE 6.1 

Data for Numerical Examples 

RPN 14 Data Titanium Data 
x f x f 

7.99 0 595 0.644 
8.09 2.76429E-5 635 0.652 
8.19 4.37498E-2 695 0.644 
8.7 0.169183 795 0.694 
9.2 0.469428 855 0.907 
10 0.943740 875 1.336 
12 0.998636 895 2.169 
15 0.999919 915 1.598 
20 0.999994 935 0.916 

985 0.607 
1035 0.603 
1075 0.608 

7. Summary and Conclusions. When geometric properties of a data set are 
important, the derivatives used for cubic and quintic piecewise polynomial inter- 
polants should be constrained so that the resulting interpolant mimics any positiv- 
ity, monotonicity, or convexity present in the data. Our two numerical examples 
illustrate the improved interpolated curves through rough data. When the data are 
smooth and the original derivative estimates accurate, the constraints are rarely 
needed. Thus, as the mesh is refined, the asymptotic convergence rate of the con- 
strained interpolant is the same as that of the original unconstrained one, except 
near extrema or similar features of the function. 

The algorithms we propose do not change the original derivative approximations 
by the least amount possible. Instead, they are designed to be effective and simple 
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to implement. We also considered algorithms to project the original derivatives to 
the closest point within the shape-preservation region. The added complexity of 
this approach, in general, does not yield a significantly improved interpolant. One 
can find an "optimal" interpolant (in the sense of minimizing the changes in the 
original derivatives) subject to the shape-preservation constraints, using constrained 
optimization packages commonly available in computer software libraries. However, 
an interpolant which is as close as possible to a nonmonotone interpolant will be 
almost nonmonotone, in the sense of having nonextremal critical points; a similar 
statement holds for convexity. If one is willing to pay for expensive optimization 
methods, one should probably optimize a function which measures the geometric 
niceness of the interpolant. 
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